Definition and Stability of Lorentzian Manifolds with Distributional Curvature
نویسندگان
چکیده
A. FollowingGeroch, Traschen,Mars andSenovilla,we considerLorentzian manifolds with distributional curvature tensor. Such manifolds represent spacetimes of general relativity that possibly contain gravitational waves, shock waves, and other singular patterns. We aim here at providing a comprehensive and geometric (i.e., coordinate-free) framework. First, we determine the minimal assumptions required on the metric tensor in order to give a rigorous meaning to the spacetime curvature within the framework of distribution theory. This leads us to a direct derivation of the jump relations associated with singular parts of connection and curvature operators. Second, we investigate the induced geometry on a hypersurface with general signature, and we determine the minimal assumptions required to define, in the sense of distributions, the curvature tensors and the second fundamental form of the hypersurface and to establish the Gauss-Codazzi equations.
منابع مشابه
On Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملOn $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملIsometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity
Assuming minimal regularity assumptions on the data, we revisit the classical problem of finding isometric immersions into the Minkowski spacetime for hypersurfaces of a Lorentzian manifold. Our approach encompasses metrics having Sobolev regularity and Riemann curvature defined in the distributional sense, only. It applies to timelike, spacelike, or null hypersurfaces with arbitrary signature ...
متن کاملHypersurfaces of Prescribed Curvature in Lorentzian Manifolds
The existence of closed hypersurfaces of prescribed curvature in globally hyperbolic Lorentzian manifolds is proved provided there are barriers.
متن کاملHypersurfaces of Prescribed Mean Curvature in Lorentzian Manifolds
We give a new existence proof for closed hypersurfaces of prescribed mean curvature in Lorentzian manifolds.
متن کامل